Simple and Compound Interest

1. Find the simple interest earned on $\$ 6000$ at 12% pa for 5 years.

$$
\begin{aligned}
I & =P R N \\
I & =6000 \times 0.12 \times 5 \\
& =\$ 3600
\end{aligned}
$$

2. A new car, valued at $\$ 28000$, depreciates at 9% pa. Find the value of the car 3 years after purchase.

$$
\begin{aligned}
A & =\mathbb{P}(1-R)^{N} \\
A & =28000(1-0.09)^{3} \\
& =\$ 21099.99
\end{aligned}
$$

Used appropriate strategies to solve familiar multi-step problems. Recognised that depreciation decreases the value of an item
3. (a) Using the compound interest formula, find the amount that $\$ 5000$ will grow to when invested at a rate of 12% pa for 2 years, compounded quarterly.

$$
\begin{aligned}
A & =P(1+R)^{N} \\
& =5000(1+0.03)^{8} \\
& =\$ 6333.85
\end{aligned}
$$

Correctly applied the compound interest formula when compounding at particular intervals
(b) Find the interest earned.

$$
\begin{aligned}
I & =A+P \\
& =6333.85-5000 \\
I & =\$ 1333.85
\end{aligned}
$$

4. $\quad \$ 240$ interest is earned on a principal of $\$ 1500$ at a simple interest rate of $4 \% \mathrm{pa}$. For how many years was the principal invested?

$$
\begin{aligned}
I & =P R N \\
\frac{240}{0.04} & =\frac{1500 \times 0.04 \times N}{0.04} \\
\frac{6000}{1500} & =\frac{1500 \times \mathrm{N}}{1500} \\
\mathrm{~N} & =4 \text { years }
\end{aligned}
$$

Correctly changed the subject of the simple interest formula in determining the number of years
5. Stephen bought a car for $\$ 12400$ on the following terms:

15\% deposit
18\% pa simple interest
Repayments made monthly for 2 years
(a) How much was the deposit?

$$
\begin{aligned}
& \frac{12400}{10} \times 15 \\
& \text { Deposit }=\$ 1860
\end{aligned}
$$

(b) What was the balance owing after payment of the deposit?

$$
\begin{array}{rl}
12 & 400-1860 \\
& =\$ 10540
\end{array}
$$

Indicated clear understanding of the process to calculate the deposit and balance owing despite a minor transcription error
(c) How much interest was charged on the balance?

$$
\begin{aligned}
& I=P R N \\
& I=10540 \times 0.085 \times 24 \\
& I=\$ 3794.40
\end{aligned}
$$

(d) What was the total amount of Stephen's repayments over the 2 years?

$$
\begin{aligned}
\text { Total } & =10540+3794 \cdot 4 \\
& =\$ 14334 \cdot 40
\end{aligned}
$$

(e) What was the amount of each monthly repayment?

$$
\begin{aligned}
& \frac{14334 \cdot 4}{24} \\
& =\$ 597.27
\end{aligned}
$$

Recognised that interest is added to the balance and that the number of years needed to be converted into months to calculate the repayments

Grade Commentary

Flynn has demonstrated thorough knowledge and understanding of simple and compound interest and has used appropriate formulae to solve multi-step problems, with a high degree of accuracy. Flynn has logically applied knowledge and understanding in calculating the monthly repayments when purchasing an item on terms. This work sample demonstrated characteristics of work typically produced by a student performing at grade B7 level.

